Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO-30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.