The linear approach to resource utilization has led to the accumulation of waste plastic in the environment for decades. Unfortunately, both traditional mechanical recycling and incineration have faced their bottlenecks that have always resulted in quality deterioration and value recovery failures. Recently, chemical recycling and upcycling processes, including the conversion of plastics into their virgin monomers, liquid fuels, or chemical feedstocks to produce value-added products, have been identified as the most promising strategy for recovering value from waste plastics. However, these methods are often cost prohibitive and relying on stringent conditions compared to current recycling methods. Accordingly, this Minireview summarizes recent trends and achievements in the chemical recycling and upcycling of waste plastics. We highlight three research topics: depolymerization of plastics into monomers; degradation of plastics into liquid fuels and waxes; and conversion of plastics into hydrogen, fine chemical feedstocks, and value-added functional materials. Indeed, chemical recycling and upcycling is a bright path to a circular and environmentally friendly plastic economy.