Reaction of the neutral P(H)NP ligand [HN(SiMe(2)CH(2)PPh(2))(2)] with tungsten hexacarbonyl resulted in coordination of P(H)NP through both phosphorus donor atoms to form the tungsten complex [W(P(HN)P)(CO)(4)] (1). Reaction of P(H)NP with tris(acetonitrile)tricarbonyl tungsten gave both facial and meridional tridentate isomers [W(P(H)NP)(CO)(3)] (2-fac and 3-mer). These three d(6) tungsten complexes could be interconverted under appropriate conditions. The thermodynamically favored isomer 3 was protonated to form seven-coordinate [W(P(H)NP)(CO)(3)H][BF(4)] (4). A related series of cationic tungsten(II) halide complexes was synthesized, [W(P(H)NP)(CO)(3)X](+) (6, X = I; 7, X = Br; 8, X = Cl; 9, X = F), by various routes. All of the tungsten(II) complexes underwent deprotonation at the amine site of the P(H)NP ligand when triethylamine was added, resulting in neutral seven-coordinate complexes. Variable temperature (1)H, (31)P{(1)H}, and (13)C{(1)H} NMR spectroscopy showed fluxional behavior for all the seven-coordinate complexes reported here. Analysis of IR and NMR spectroscopic data showed trends through the series of coordinated halides. Crystal structures of tetracarbonyl 1, meridional tricarbonyl 3, and cationic hydride 4 were determined to confirm the coordination mode of the P(H)NP ligand.