Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) 192 Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR192 Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the 192 Ir air-kerma calibration coefficient from the NIST air-kerma standards at 137 Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A wall for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N K interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, À0.10%, À1.13%, À0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to update the current standard maintained at the UWADCL.