Abstract:In spatial generalized linear mixed models (SGLMMs), statistical inference encounters problems, since random effects in the model imply high-dimensional integrals to calculate the marginal likelihood function. In this paper, we temporarily treat parameters as random variables and express the marginal likelihood function as a posterior expectation. Hence, the marginal likelihood function is approximated using the obtained samples from the posterior density of the latent variables and parameters given the data. … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.