2021
DOI: 10.1088/1742-6596/2123/1/012027
|View full text |Cite
|
Sign up to set email alerts
|

Monte Carlo Simulation in Quantile Regression Parameter for Sparsity Estimate

Abstract: Monte Carlo is a method used to generate data according to the distribution and resampling until the parameters of the method used became convergen. The purpose of this simulation is first to prove that quantile regression with the estimated sparsity function parameter can model the data according to the non-uniform distribution of the data. Secondly, it’s to prove that the quantile regression is a developed method from the linear regression. The pattern of data which is not uniform is generally referred to as… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 2 publications
0
0
0
Order By: Relevance