Purpose and Aim:
The Vero4DRT (Brainlab AG) linear accelerator is capable of dynamic tumor tracking (DTT) by panning/tilting the radiation beam to follow respiratory-induced tumor motion in real time. In this study, the panning/tilting motion is modeled in Monte Carlo (MC) for quality assurance (QA) of four-dimensional (4D) dose distributions created within the treatment planning system (TPS).
Materials and Methods:
Step-and-shoot intensity-modulated radiation therapy plans were optimized for 10 previously treated liver patients. These plans were recalculated on multiple phases of a 4D computed tomography (4DCT) scan using MC while modeling panning/tilting. The dose distributions on each phase were accumulated to create a respiratory-weighted 4D dose distribution. Differences between the TPS and MC modeled doses were examined.
Results:
On average, 4D dose calculations in MC showed the maximum dose of an organ at risk (OAR) to be 10% greater than the TPS’ three-dimensional dose calculation (collapsed cone [CC] convolution algorithm) predicted. MC’s 4D dose calculations showed that 6 out of 24 OARs could exceed their specified dose limits, and calculated their maximum dose to be 4% higher on average (up to 13%) than the TPS’ 4D dose calculations. Dose differences between MC and the TPS were greatest in the beam penumbra region.
Conclusion:
Modeling panning/tilting for DTT has been successfully modeled with MC and is a useful tool to QA respiratory-correlated 4D dose distributions. The dose differences between the TPS and MC calculations highlight the importance of using 4D MC to confirm the safety of OAR doses before DTT treatments.