2015
DOI: 10.1103/physreve.92.042118
|View full text |Cite
|
Sign up to set email alerts
|

Monte Carlo study of anisotropic scaling generated by disorder

Abstract: We analyze the critical properties of the three-dimensional Ising model with linear parallel extended defects. Such a form of disorder produces two distinct correlation lengths, a parallel correlation length ξ(∥) in the direction along defects and a perpendicular correlation length ξ(⊥) in the direction perpendicular to the lines. Both ξ(∥) and ξ(⊥) diverge algebraically in the vicinity of the critical point, but the corresponding critical exponents ν(∥) and ν(⊥) take different values. This property is specifi… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
4
0
5

Year Published

2016
2016
2024
2024

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 76 publications
0
4
0
5
Order By: Relevance
“…[10,11,[37][38][39][40][41][42][43]. The numerical studies of systems with parallel linear [44] and planar defects [45,46] were also performed.…”
Section: Introductionmentioning
confidence: 99%
“…[10,11,[37][38][39][40][41][42][43]. The numerical studies of systems with parallel linear [44] and planar defects [45,46] were also performed.…”
Section: Introductionmentioning
confidence: 99%
“…The computer technologies and computational study methods have developed to their prevalence over the theoretical and experimental methods in studying the unordered magnetic systems. This is due to the fact that real systems always have complicating factors, which impede use of theoretical and experimental procedures [1][2][3][4][5]. Many of the known theoretical arrangements within a theory & field renormalization & group method becomes inoperative if applied to systems with disorder (see reviews [4,5]).…”
Section: Introductionmentioning
confidence: 99%
“…Вектор исследования фазовых переходов (ФП) и критических свойств магнитных систем под воздействием беспорядка, сместился в сторону применения вычислительных методов. Это обусловлено тем, что моделирование с использованием методов Монте-Карло (МК) позволяет изучать более реалистичные модели и учитывать усложняющие факторы, всегда присутствующие в реальных материалах [1][2][3][4][5]. Этому способствуют и серьезно возросшие вычислительные возможности современных компьютеров, и множество новейших и мощных алгоритмов, специально разработанных для использования в этой области.…”
Section: Introductionunclassified