2006
DOI: 10.1016/j.jeconom.2005.06.007
|View full text |Cite
|
Sign up to set email alerts
|

Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics

Abstract: Montréal

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
248
0
13

Year Published

2009
2009
2015
2015

Publication Types

Select...
5
4

Relationship

2
7

Authors

Journals

citations
Cited by 237 publications
(262 citation statements)
references
References 48 publications
1
248
0
13
Order By: Relevance
“…18 One can notice that our asymmetric copula specification implies some restrictions in the dependence structure. For three different couples from different components of this copula, the sum of their TDC is lower than one.…”
Section: Specification Of the Dependence Structurementioning
confidence: 99%
See 1 more Smart Citation
“…18 One can notice that our asymmetric copula specification implies some restrictions in the dependence structure. For three different couples from different components of this copula, the sum of their TDC is lower than one.…”
Section: Specification Of the Dependence Structurementioning
confidence: 99%
“…20 18 The Longin and Solnik (2001) result implies that lower tails are dependent while upper tails are independent. Hence, the Gumbel survival copula is designed to model this feature since it has this tail dependence structure.…”
Section: Specification Of the Dependence Structurementioning
confidence: 99%
“…In view of the above characterization of the distribution of SL n (β 1 ), its distribution can be simulated under the null hypothesis and the relevant critical values can be evaluated to any degree of precision with a sufficient number of replications. It is also possible to run exact Monte Carlo tests (corrected for the discrete nature of the test statistic) as described in Dufour (2006).…”
Section: Testing the Zero Coefficient Hypothesis In Linear Regressionsmentioning
confidence: 99%
“…En particulier, la méthode des tests de Monte Carlo (MC) (Dufour, 2006) permet d'obtenir, par des simulations, la distribution sous l'hypothèse nulle des statistiques à l'étude tout en tenant compte des relations conjointes sous-jacentes sans se contraindre aux lois normales. Sur base de cette méthode, plusieurs résultats publiés par sont négatifs vis-à-vis les conceptions classiques et les idées reçues.…”
Section: Les Exemples Les Plus Connus Incluent : (I) Les Tests D'effiunclassified