2018
DOI: 10.3390/su10093282
|View full text |Cite
|
Sign up to set email alerts
|

Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory

Abstract: Accurate load forecasting can help alleviate the impact of renewable-energy access to the network, facilitate the power plants to arrange unit maintenance and encourage the power broker companies to develop a reasonable quotation plan. However, the traditional prediction methods are insufficient for the analysis of load sequence fluctuations. The economic variables are not introduced into the input variable selection and the redundant information interferes with the final prediction results. In this paper, a s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
7
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 41 publications
0
7
0
1
Order By: Relevance
“…Dengan meningkatnya kegiatan ekonomi, kebutuhan listrik cenderung meningkat [9]. Untuk memprediksi tren permintaan seperti itu dengan akurasi yang lebih tinggi, penyertaan variabel ekonomi dalam model peramalan menjadi yang terpenting [10]. Selain itu, krisis ekonomi di suatu negara juga memiliki efek offset pada permintaan listriknya.…”
Section: Optimis DI Mana Kondisi Perekonomian Provinsiunclassified
“…Dengan meningkatnya kegiatan ekonomi, kebutuhan listrik cenderung meningkat [9]. Untuk memprediksi tren permintaan seperti itu dengan akurasi yang lebih tinggi, penyertaan variabel ekonomi dalam model peramalan menjadi yang terpenting [10]. Selain itu, krisis ekonomi di suatu negara juga memiliki efek offset pada permintaan listriknya.…”
Section: Optimis DI Mana Kondisi Perekonomian Provinsiunclassified
“…The improvement of solutions related to short-term forecasting is also conducive to the development of currently necessary research on how to optimize the planning of complex energy storage systems for electric and gas vehicles [7]. The monthly and yearly load forecasting results are helpful, e.g., in renewable-energy integration processes, in mediumterm planning power plants or grids, and in generator maintenance scheduling [8]. On the other hand, LTLF is used primarily in long-term power system operation and planning, which can be based on macro-economic indicators (e.g., GDP and population), sectoral decomposition, technological penetration in various market segments and detailed temporal granularity [9].…”
Section: Introductionmentioning
confidence: 99%
“…With increasing economic activity, the electricity demand tends to rise [4]. To predict such demand trends with a higher accuracy, the inclusion of economic variables in the forecasting models becomes paramount [5]. Therefore, while comparing such forecasting practices between Rising research trends in electricity load forecasting are primarily due to the integration of new technologies.…”
Section: Introductionmentioning
confidence: 99%