The long-term effects of climate change and climate extremes have been associated with changes in tree growth and forest productivity worldwide, and dendrochronological analyses are important tools that can be used to investigate the influence of climatic forces on tree growth at a particular site. In this study, a 180-year tree ring width chronology (spanning from 1843 to 2022) of living pine trees (Pinus latteri) in Tak province, northwestern Thailand, was developed. The analysis of the climate–tree growth relationship indicated the influences of the annual total rainfall (r = 0.60, p < 0.001) and annual averaged relative humidity (r = 0.47, p < 0.001) on tree growth in this area. Anomalously high (for example, in 1853, 1984, 2011, and 2018) and low growths (for example, in 1954, 1983, 1992, and 1996) were found. Growth anomalies in the Thai pine in this study were related to changes in abnormal and extreme rainfall (r = 0.94, p < 0.001) and the El Niño Southern Oscillation (ENSO). Our results confirm that rainfall and relative humidity are the main climatic factors regulating the radial growth of Thai pine. This finding could be an important contribution to further research on the effects of climate change and extreme weather events on the vulnerability of tropical and subtropical trees in this region.