2017 21st International Conference on Control Systems and Computer Science (CSCS) 2017
DOI: 10.1109/cscs.2017.36
|View full text |Cite
|
Sign up to set email alerts
|

Mood Detector - On Using Machine Learning to Identify Moods and Emotions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…It works like an automatic system. [1] In the current context, the trend in technology is tilted largely towards developing applications that increase the comfort of people and the interaction between humans and computers. The most known example of emotions detection application is based on interpreting facial expressions using image processing algorithms.…”
Section: Introductionmentioning
confidence: 99%
“…It works like an automatic system. [1] In the current context, the trend in technology is tilted largely towards developing applications that increase the comfort of people and the interaction between humans and computers. The most known example of emotions detection application is based on interpreting facial expressions using image processing algorithms.…”
Section: Introductionmentioning
confidence: 99%
“…Penelitian untuk memprediksi emosi manusia berdasarkan kondisi tubuh sudah dilakukan seperti pada penelitian yang dilakukan oleh Mikael Menard yang memprediksi emosi marah, jijik, takut, gembira, terkejut, dan sedih berdasarkan 2 parameter yaitu detak jantung dan konduktivitas kulit [8]. Penelitian prediksi emosi berdasarkan kondisi tubuh dikembangkan seperti penelitian yang dilakukan oleh Alexandra Cernian yang memprediksi emosi happy, sad, nervous, dan bored pada orang dewasa berdasarkan 3 parameter yaitu suhu tubuh, detak jantung, serta konduktivitas kulit [9]. Selanjutnya, penelitian terkait prediksi emosi berdasarkan kondisi tubuh dikembangkan kembali dengan menambahkan beberapa parameter lain seperti penelitian yang dilakukan oleh Trisha Paul, yang melakukan penelitian prediksi emosi pada 16 subjek berdasarkan 4 parameter yaitu detak jantung, konduktivitas kulit, suhu tubuh, serta sinyal EEG [10].…”
unclassified