The Grignard reaction offers a straight forward atom-economic synthesis of organomagnesium halides, which undergo redistribution reactions (Schlenk equilibrium) yielding diorganylmagnesium and magnesium dihalides. The homologous organocalcium complexes (heavy Grignard reagents) gained interest only quite recently owing to several reasons. The discrepancy between the inertness of this heavy alkaline earth metal and the enormous reactivity of its organometallics hampered a vast and timely development after the first investigation more than 100 years ago. In this overview the synthesis of organocalcium reagents is described as is the durability in ethereal solvents. Aryl-, alkenyl-, and alkylcalcium halides are prepared by direct synthesis. Characteristic structural features and NMR parameters are discussed. Ligand redistribution reactions can be performed by addition of potassium tert-butanolate to ethereal solutions of arylcalcium iodides yielding soluble diarylcalcium, whereas sparingly soluble potassium iodide and calcium bis(tert-butanolate) precipitate. Furthermore, reactivity studies with respect to metalation and addition to unsaturated organic compounds and metal-based Lewis acids, leading to the formation of heterobimetallic complexes, are presented.