Traditional collaborative filtering (CF)-based recommendation systems are often challenged by data sparsity. The recent research has recognized the potential of integrating new information sources, such as knowledge graphs, to address this issue. However, a common drawback is the neglect of the interplay between user–item interaction data and knowledge graph information, resulting in insufficient model performance due to coarse-grained feature fusion. To bridge this gap, in this paper, we propose a novel graph neural network (GNN) model called KGCFRec, which leverages both Knowledge Graph and user–item Collaborative Filtering information for an enhanced Recommender system. KGCFRec employs a dual-channel information propagation and aggregation mechanism to generate distinct representations for the collaborative knowledge graph and the user–item interaction graph. This is followed by an attention mechanism that adaptively fuses the knowledge graph with collaborative information, thereby refining the representations and narrowing the gap between them. The experiments conducted on three real-world datasets demonstrate that KGCFRec outperforms state-of-the-art methods. These promising results underscore the capability of KGCFRec to enhance recommendation accuracy by integrating knowledge graph information.