Abstract. Group-theoretical fusion categories are defined by data concerning finite groups and their cohomology: A finite group G endowed with a three-cocycle ω, and a subgroup H ⊂ G endowed with a two-cochain whose coboundary is the restriction of ω.The objects of the category are G-graded vector spaces with suitably twisted H-actions; the associativity of tensor products is controlled by ω. Simple objects are parametrized in terms of projective representations of finite groups, namely of the stabilizers in H of right H-cosets in G, with respect to two-cocycles defined by the initial data.We derive and study general formulas that express the higher Frobenius-Schur indicators of simple objects in a group-theoretical fusion category in terms of the group-theoretical and cohomological data defining the category and describing its simples.