2020
DOI: 10.1166/jctn.2020.9102
|View full text |Cite
|
Sign up to set email alerts
|

Morlet-Kernel Principal Component Analysis Features for Speech Recognition

Abstract: The aim of this paper is to present the application of Morlet wavelet to extract the speech features in place of MFCC features. KPCA is applied for selecting and reducing the large features obtained from Morlet wavelet. NLMS (Normalized Least Mean Square) filter is used to reduce additive noise levels ranging from ±5 dB to ±15 dB. Features are modeled using Ensembled Support Vector Machine classification model for FSDD and Kannada multi speaker data sets. The comparative results are discussed over logistic re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance