The purpose of this study was to use a portable optical coherence tomography (OCT) for characterization of corneal stromal striae (CSS) in an ovine animal model and human corneas with histological correlation, in order to evaluate their architectural pattern by image analysis. Forty-six eyes from female adult sheep (older than 2 years), and 12 human corneas, were included in our study. The eyes were examined in situ by a portable OCT, without enucleation. All OCT scans were performed immediately after death, and then the eyes were delivered to a qualified histology laboratory. In the ovine animal model, CSS were detected with OCT in 89.1% (41/46) of individual scans and in 93.4% (43/46) of histological slices. In human corneas, CSS were found in 58.3% (7/12) of cases. In both corneal types, CSS appeared as “V”- or “X”-shaped structures, with very similar angle values of 70.8° ± 4° on OCT images and 71° ± 4° on histological slices (p ≤ 0.01). Data analysis demonstrated an excellent degree of reproducibility and inter-rater reliability of measurements (p < 0.001). The present study demonstrated that by using a portable OCT device, CSS can be visualized in ovine and human corneas. This finding suggests their generalized presence in various mammals. The frequent observation, close to 60%, of such collagen texture in the corneal stroma, similar to a ‘truss bridge’ design, permits to presume that it plays an important structural role, aimed to distribute tensile and compressive forces in various directions, conferring resilience properties to the cornea.