A comparative study has been carried out using the freeze-fracture technique on the perineurium of the sciatic nerve from normal and diabetic mice (C57Bl/Ks, BALB/c and CD1 strains) and rats of various ages. The replicas showed that tight junctions connected perineurial cells both within the same cell layer (zonulae occludentes) and between adjacent layers (maculae occludentes). In neonates, a number of zonulae occludentes were characterized by short, incomplete or fragmented ridges at various intervals from each other; in adults, tight junctions appeared as 'mature' networks of interconnected, branching and/or anastomosing strands. Zonulae occludentes of diabetic mice also exhibited frequent interruption of the strands and reduction in the branching of strands. Gap junctions occurred in both zonulae and maculae occludentes of normal and diabetic rats at all ages. In the C57Bl/Ks strain such junctions occurred more frequently in zonulae occludentes of diabetic animals. It is suggested that perineurial cells are coupled by gap junctions to allow fast transfer of ions and small-sized molecules across the layers; under pathological conditions, such as diabetes, the increase in cell-to-cell signalling may be important in controlling the abnormal metabolic situation.