Conventional suture anchors (CAs) and all-suture anchors (ASAs) are used for rotator cuff repair. Pull-out strength (POS) is an important factor that affects surgical outcomes. While the fixation mechanism differs between the anchor types and relies on the quality, few studies have compared biomechanical properties of anchors based on bone quality. This study aimed to compare the biomechanical properties of anchors using osteoporotic bone (OB) and non-osteoporotic bone (NOB) simulators. Humerus simulators were fabricated using fused deposition modeling of 3D printing and acrylonitrile butadiene styrene adjusting the thickness of cortical bone and density of cancellous bone based on CT images. Cyclic loading from 10 to 50 N, 10 to 100 N, and 10 to 150 N for 10 cycles was clinically determined at each anchor because the supraspinatus generates a force of 67–125 N in daily activities of normal control. After cyclic loading, the anchor was extruded at a load of 5 mm/min. Displacement, POS, and stiffness were measured. In OB simulators, CAs revealed bigger gap displacement than ASAs with cyclic loading of 10–150 N. ASA showed higher values for POS and stiffness. In NOB simulators, ASAs revealed bigger gap displacement than CAs with cyclic loading of 10–150 N. ASA showed higher values for POS and CA showed higher values for stiffness. POS of anchors depends on anchors ‘displacement and bone stiffness. In conclusion, ASA demonstrated better biomechanical performance than CA in terms of stability under cyclic loading and stiffness with similar POS in OB.