The influences of chronic deficiency of L-ascorbic acid (AsA) on the differentiation of osteo-chondrogenic cells and the process of endochondral ossification were examined in the mandibular condyle and the tibial epiphysis and metaphysis by using Osteogenic Disorder Shionogi (ODS) rats that bear an inborn deficiency of L-gulonolactone oxidase. Weanling male rats were kept on an AsA-free diet for up to 4 weeks, until the symptoms of scurvy became evident. The tibiae and condylar processes of scorbutic rats displayed undersized and distorted profiles with thin cortical and scanty cancellous bones. In these scorbutic bones, the osteoblasts showed characteristic expanded round profiles of rough endoplasmic reticulum, and lay on the bone surface where the osteoid layer was missing. Trabeculae formation was deadlocked, although calcification of the cartilage matrix proceeded in both types of bone. Scorbutic condylar cartilage showed severe disorganization of cell zones, such as unusual thickening of the calcification zone, whereas the tibial cartilage showed no particular alterations (except for a moderately decreased population of chondrocytes). In condylar cartilage, hypertrophic chondrocytes were encased in a thickened calcification zone, and groups of nonhypertrophic chondrocytes occasionally formed cell nests surrounded by a metachromatic matrix in the hypertrophic cell zone. These results indicate that during endochondral ossification, chronic AsA deficiency depresses osteoblast function and disturbs the differentiation pathway of chondrocytes. The influence of scurvy on mandibular condyle cartilage is different from that on articular and epiphyseal cartilage of the tibia, suggesting that AsA plays different roles in endochondral ossification in the mandibular condyle and long bones. Anat Rec 268: 93-104, 2002.