Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via nongenomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system. Steroid hormones such as corticosterone, progesterone, testosterone, and estrogen are known to exhibit their physiological effects via their specific nuclear receptors 1 . Steroid hormones regulate gene transcription through nuclear receptors, which act as ligand-dependent transcription factors. These effects are known as "genomic" actions of steroid hormones, which generally take few hours to days to fully manifest. However, in various tissues, including the central nervous system (CNS), steroid hormones present a rapid action on the targeted cells within minutes. These "non-genomic" actions can be partially explained by membrane transport via nuclear receptors 2, 3 . However, other "non-genomic" actions are nuclear receptor-independent responses caused by insensitivity to the receptor antagonist and have been observed in knockout mice 4 . This suggests the possible involvement of unidentified receptors in the rapid non-genomic actions of steroid hormones 5 . The putative receptors for these actions have not yet been identified.