In this paper a modified dendrite morphological neural network (DMNN) is applied for recognition and classification of 3D objects. For feature extraction, the first two Hu's moment invariants are calculated based on 2D binary images, as well as the mean and the standard deviation obtained on 2D grayscale images. These four features were fed into a DMNN for classification of 3D objects. For testing, COIL-20 image database and a generated dataset were used. A comparative analysis of the proposed method with MLP and SVM is presented and the results reveal the advantages of the modified DMNN. An important characteristic of the proposed recognition method is that because of the simplicity of calculation of the extracted features and the DMNN, this method can be used in real applications.