The objectives of this study were to prepare starch nanocomposite films incorporating grape pomace extract (GPE) and cellulose nanocrystal (CNC) using a solvent-casting method, and to characterize the mechanical properties, color, water vapor transmission rate (WVTR), crystalline structure, morphology, thermal stability, phenolic compound release profile and antibacterial activity of the films. Incorporating CNC and GPE significantly (P < 0.05) increased the films' thickness, mechanical properties, and opacity. Brightness and color were mainly influenced by GPE level, while CNC had a great impact on the reduction of WVTR values of the film. Three characteristic cellulose I crystalline peaks were observed using X-ray diffraction in CNC-containing nanocomposite films. However, the effect of CNC levels on thermal stability was not significant. Phenolic compound releases were time and film dependent, and the nanocomposite films incorporating with GPE and CNC exhibited stronger inhibitory effect against Staphylococcus aureus ATCC 29213 compared to Listeria monocytogenes ATCC 7644.