Hole-doping into the Mott insulator LaMnO3 results in a very rich magneto-electric phase diagram, including colossal magnetoresistance and different types of charge and orbital ordering. On the other hand, LaMnO3 presents an important catalytic activity for oxygen reduction, which is fundamental for increasing the efficiency of solid-oxide fuel cells and other energy-conversion devices. In this work, we report the chemical solution (water-based) synthesis of high-quality epitaxial thin films of LaMnO3, free of defects at square-centimeter scales, and compatible with standard microfabrication techniques. The films show a robust ferromagnetic moment and large magnetoresistance at room temperature. Through a comparison with films grown by pulsed laser deposition, we show that the quasi-equilibrium growth conditions characteristic of this chemical process can be exploited to tune new functionalities of the material.