The distribution of cocaine- and amphetamine-regulated transcript peptide (CARTp)- like immunoreactivity was studied only in the rat central nervous system (CNS). In mammals, CART peptides occur among others in brain areas that control feeding behavior. We mapped CARTp-immunoreactive structures in the CNS of the frog Rana esculenta and assumed that differences may exist in the CARTp-containing neuronal populations between the frog, which does not feed in winter, and the rat. In the forebrain, immunoreactive cells and fibers were found in the olfactory bulb, nucleus accumbens, amygdala, medial pallium, septum, striatum, the preoptic nuclei, ventromedial nucleus, central thalamic nucleus, and the hypothalamus. The optic pathway was free of immunoreactivity. The neurohypophysis showed intense immunostaining. In the mesencephalon, many cells were stained in the Edinger-Westphal nucleus, and a few in the optic tectum, where fibers were stained in all plexiform layers. In the retina, some cells in the inner nuclear layer contained CARTp. In the rhombencephalon, cells were stained in the raphe nuclei, central gray, nucleus of the solitary tract, and the vicinity of motor nuclei. Neurons of the motor cranial nerves were densely innervated by CARTp-positive fibers originating from the spinal cord. In the spinal cord, preganglionic cells were stained, and motoneurons were surrounded by immunoreactive varicose axon terminals. Major differences were found between the frog and the rat brains in the distribution of CARTp in the visual system, olfactory bulb, preoptic area, and the motor nuclei. Some of these differences may be related to feeding behavior of these animals.