We measured the Raman scattering of graphene deposited nanohole arrays. As the sample was azimuthally rotated, periodicities of 7.5 degrees and 5 degrees were revealed for the 2700 cm(-1) and 1600 cm(-1) Raman lines of graphene, respectively. This is contrary to the scattered laser line azimuthal symmetry of 30 degrees for the hole array alone. When a reference dye (stilbene) was deposited on the graphenated platforms, its Raman peak shifted as a function of incident (tilt) angle; this was contrary to the unshifted 1600 cm(-1) peak of graphene itself. The data suggest strong coupling between the molecular vibrations as portrayed by Raman spectra and surface plasmon polariton waves propagating along the graphene surface.