Biopolymers obtained from renewable resources are an interesting alternative to conventional polymers obtained from fossil resources, as they are sustainable and environmentally friendly. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester produced from 100% renewable plant resources and plays a key role in the biopolymer market, and is experiencing ever-increasing use worldwide. Unfortunately, this biopolymer has some usage limitations when compared with traditional polymers; therefore, blending it with other biopolymers, such as poly(butylene succinate) (PBS), poly(butylene succinate-co-butylene adipate) (PBSA), poly(butylene adipate-co-butylene terephthalate) (PBAT) and different poly(hydroxyalkanoates) (PHA), is considered an interesting method to improve it significantly, customize its properties and extend the range of its applications. The following review highlights, in its first part, the physico-chemical and mechanical properties of PLA in comparison to the other biopolymers listed above, highlighting the various drawbacks of PLA. The second part of the review deals with recent developments, results, and perspectives in the field of PLA-based blends.