In this paper, we investigate the reliability of estimating of inclusion size distribution and number density in steel by using stereological methods. The magnitude of the inclusion concentration in steel is evaluated by the total oxygen and the assumed average inclusion sizes. The principles of Schwartz-Saltykov (SS) and modified SS (MSS) methods are introduced. A simulation model is developed to disperse particles with a predefined particle size distribution (PSD) randomly into a three dimensional (3D) space. A series of test planes are generate to measure the two dimensional (2D) PSD and particle number density (PND) on the cross-sections (CS). The SS and MSS methods are applied to investigate the reliability of the translation between the 3D and 2D information of the system, such as the 2D and 3D PSD and PND. The influence of predefined 3D PSD on the reliability of the stereological methods are studied, such as mono sized, lognormal and normal distributions. The effect of the representative group diameters in the discretized groups for SS and MSS methods is investigated as well.