Thermal biology research compares field with laboratory data to elucidate the evolution of temperature-sensitive traits in ectotherms. The hidden challenge of many of these studies is discerning whether animals actively thermoregulate, since motivation is not typically assessed. By studying the behaviours involved in thermoregulation, we can better understand the mechanisms underlying body temperature control. Using an integrative approach, we assessed the thermoregulatory and thermotactic behaviours of two sympatric snake species with contrasting life histories: the generalist Eastern Garter Snake (Thamnophis sirtalis sirtalis ( Linnaeus, 1758 )) and the semi-fossorial Northern Red-bellied Snake (Storeria occipitomaculata occipitomaculata ( Storer, 1839 )). We expected that thermoregulatory behaviours would be optimized based on life history, in that T. s. sirtalis would show higher evidence for thermally oriented behaviours than S. o. occipitomaculata due to its active nature. Thamnophis sirtalis sirtalis actively thermoregulated, had higher thermal preferences (29.4 ± 2.5 vs. 25.3 ± 3.6 °C), and was more active than S. o. occipitomaculata, which showed relatively low evidence for thermotaxis. Our results build on the notion that evaluating movement patterns and rostral orientation towards a heat source can help ascertain whether animals make thermally motivated choices. Our data provide insight into the thermoregulatory strategies used by snakes with different life histories and maximize the information provided by behavioural thermoregulation experiments.