Complement fixation, as evidenced by C4d in the microvasculature, is a widely accepted criterion of antibody-mediated rejection. Complement fixation has been shown to be essential in acute antibody-mediated rejection, but its role in chronic rejection has not been addressed. Previous studies showed that passive transfer of complement fixing monoclonal IgG2a anti-H-2Kk into B6.RAG1−/− KO recipients of B10.BR hearts led to progressive chronic transplant arteriopathy (CTA) over 14–28 days, accompanied by C4d deposition. The present studies were designed to test whether complement was required for these lesions. We report that a noncomplement fixing donor-specific alloantibody (DSA, monoclonal IgG1 anti-H-2Kk) injected into B6.RAG1−/− KO recipients of B10.BR hearts also promotes CTA, without C4d deposition. Furthermore, a passive transfer of DSA (monoclonal IgG2a anti-H-2Kk) initiated endarteritis followed by CTA in B6.RAG1−/− mice genetically deficient in the third component of complement (RAG1−/−C3−/−). These studies indicate that antibody to class I MHC antigens can trigger chronic arterial lesions in vivo without complement participation, in contrast to acute antibody-mediated rejection. This pathway may be relevant to C4d-negative chronic rejection sometimes observed in patients with DSA, and argues that lack of C4d deposition does not exclude antibody-mediated chronic rejection.