Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development.executive function | cognitive conflict | inhibition | morphometry S elf-regulation enables people to make plans, choose from alternatives, control impulses, inhibit thoughts, and regulate social behavior (updated reviews in refs. 1 and 2). Several neuropsychiatric conditions and problems have been related to deficiencies in self-regulation [e.g., Attention Deficit Hyperactivity Disorder (3), addiction (4), risk behavior (5), conduct problems (6), and poor school and academic performance (7, 8)]. Although development of self-regulation in children is the result of a dynamic interaction between maturation and learning, we have scarce knowledge about the role played by structural brain characteristics in this process. Recent reports indicate that adjustment problems in childhood psychopathology are related to structural brain characteristics (9-13), but the brain basis for development of self-regulation in normal children is less well-understood. Thus, the purpose of the present paper was to use multimodal neuroimaging to map the structural brain characteristics related to self-regulation and cognitive control in a large sample of 735 children between 4 and 21 y of age.Self-regulation is closely tied to the concepts of cognitive control, attention, and executive f...