Background
From a biomechanical point of view, pedicle screws (PS) are better than other kinds of screws for implantation in the seventh cervical vertebra (C7). However, the application of PS is limited because of the high risk of severe complications. It is essential to define the optimal entry point and trajectory. The aim of this study was to comprehensively analyze the starting point and trajectory for C7 PS insertion using three dimensional (3D) models.
Methods
Overall, 60 subjects aged 18 to 67 years old were included. All CT images were used to construct 3D computer models of the C7 vertebrae. A new coordinate system was established for the next evaluation. The pedicle axis was calculated with respect to the entire pedicle; then, the ideal entry point, screw diameter and length, sagittal angle and lateral angle were assessed.
Results
All the ideal entry points were located at the medial superior to lateral notch (LN), and the mean distance between the entry point and LN was 5.86 ± 1.67 mm in the horizontal direction and 3.47 ± 1.57 mm in the vertical direction. The mean distance between the entry point and the middle point of the inferior edge of the C6 articular process (MP) was 0.74 ± 1.83 mm in the horizontal direction. The mean sagittal angle of the pedicle axis was 90.42°, and the mean pedicle transverse angle was 30.70°. The average diameter and length of the PS were 6.51 ± 0.76 mm and 31.58 ± 4.40 mm, respectively.
Conclusions
This study provided a novel method to calculate the ideal starting point and trajectory for C7 PS insertion. These measurements may be helpful for preoperative planning. It is recommended that 3D CT imaging is used preoperatively to carefully evaluate the anatomy of each individual.