When zymogen granules, the secretion granules of pancreatic acinar cells, fill, secretory product is accumulated in immature granules, condensing vacuoles. Mature granules are formed when this product (protein) condenses into an osmotically inactive aggregate and, bulk water is expelled. This hypothesis for granule morphogenesis has two elements. The first is that immature granules are precursors to mature granules. The second is that a particular maturational event, condensation, which involves the aggregation of protein, takes place. These hypotheses lead to two straightforward predictions. One, that condensing vacuoles on average, should contain less protein than filled or mature granules. And two, that, due to condensation, mature granules should contain protein at a common concentration. In the current work, both of these predictions were tested using measurements of the protein content of individual granules acquired by X-ray microscopy. Neither prediction was affirmed by the experimental results. First, there was no distinguishable difference in the distribution of protein between immature and mature granules. Second, the protein concentration of mature granules varied widely between preparations, although granules from the same preparation had similar concentrations. From the data we conclude that: 1) mature granules and condensing vacuoles are different, though not necessarily unrelated, types of secretory vesicle, and not two forms of the same object; 2) as such, condensing vacuoles are not precursors to mature granules; 3) all granules do not contain protein at one particular concentration when "full," or mature; 4) granule maturation does not involve a condensation step; 5) concentration is not determined by such physical limits as the space available for protein packing or condensation; and 6) the amount of protein contained is physiologically regulated.