Complex Data Warehousing and Knowledge Discovery for Advanced Retrieval Development 2010
DOI: 10.4018/978-1-60566-748-5.ch010
|View full text |Cite
|
Sign up to set email alerts
|

Mosaic

Abstract: Strong theoretical foundation and low computational complexity make representative-based clustering one of the most popular approaches for a clustering problem. Despite those superiorities, it presents two main drawbacks: the shape of clusters obtained is limited to convex shapes, and its performance is highly dependent on seeds initialization. To address these problems, the authors introduce MOSAIC, a novel agglomerative clustering algorithm, which greedily merges neighboring clusters maximizing a plug-in fit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance