2020
DOI: 10.1016/j.cej.2019.123047
|View full text |Cite
|
Sign up to set email alerts
|

MoSe2 nanoplatelets with enriched active edge sites for superior sodium-ion storage and enhanced alkaline hydrogen evolution activity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
22
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 62 publications
(24 citation statements)
references
References 39 publications
1
22
0
1
Order By: Relevance
“…Similar redshifts of the E 1 2g and A 1g peaks of TMDCs have been reported for P-dopped MoS 2 , exfoliated MoS 2 , and defect-rich MoSe 2 . [24,31,32] Therefore, P doping of MoSe 2 affected the interactions between adjacent atoms.…”
Section: Resultsmentioning
confidence: 99%
“…Similar redshifts of the E 1 2g and A 1g peaks of TMDCs have been reported for P-dopped MoS 2 , exfoliated MoS 2 , and defect-rich MoSe 2 . [24,31,32] Therefore, P doping of MoSe 2 affected the interactions between adjacent atoms.…”
Section: Resultsmentioning
confidence: 99%
“…随着"碳中和、碳达峰"概念的提出,新能源的 重要性日益凸显。作为新能源中应用最广泛的一种, 锂离子电池已经广泛渗透进了人类的日常生活 [1][2] 。 然而,地球上锂资源的储量十分有限,且其分布的不 均匀性导致我国锂离子电池的发展十分容易受到 "卡 脖子"的风险。因此,寻求新型的低成本、资源丰富 的高性能二次电池体系以替代锂离子电池成为能源 可持续发展的关键。钠与锂属于同族元素,从而具有 很多相似的性质, 且钠在地球上储量丰富, 成本低廉, 因此, 钠离子电池已成为未来储能电池发展的重要方 向之一 [3][4][5] [6][7][8][9] 。因此,新型高容量、长循环 寿命的负极材料的研发尤为重要。近年来,碳材料、 合金材料、金属氧/硫/硒化物等均被广泛研究,其中 碳材料循环性能稳定但容量低 [10] ; 合金材料具有高的 理论容量,但存在巨大的体积膨胀 [11] ;金属氧化物理 论容量较高,但电导率较低 [12] 。理想的钠离子电池负 极材料需要满足高导电性、 较小的体积膨胀以及长循 环寿命等要求,因此,金属硫族化合物开始逐渐进入 人们的视野。 图 1 钠离子电池负极材料 [13][14][15][16][17][18] Figure 1 Anode materials of sodium ion batteries 金属硫族化合物包括金属硫化物与金属硒化物, 具有较大的层间距以及较高的理论容量, 因此被认为 是最有应用前景的钠离子电池负极材料。 而硒相比硫 具有更大的原子半径以及更强的金属性, 且金属硒化 物具有更窄的带隙和线宽, 因此具有更高的导电性以 及更大的层间距 [19][20] 。同时,金属硒化物在电化学脱 嵌钠过程中发生转化/合金型反应机理,从而表现出 很高的储钠容量。金属硒化物可以分为层状结构(包 括 MoSe2,SnSe,SnSe2,WSe2,TiSe2 等)及非层状 结构(包括 FeSe2,ZnSe,CoSe2,NiSe2 等) 。层状 结构金属硒化物通常是由金属原子 M 夹在两层硒 (Se)原子之间形成的三层结构(Se-M-Se) ,层间以 共价键相连,而每个结构之间则是以范德华力结合, 钠离子很容易在其中嵌入与脱出; 而非层状金属硒化 物大多可以从天然矿石中提出, 具有低成本以及高理 论容量的优势 [21][22] [26] ; (b) DR-MoSe2 和 DF-MoSe2 的 BET 测试 [27] ; (c) MoSe2-MoO3/C 的 HRTEM 图像 [28] ;(d) MoSe2@rGO 的微观键合,(e) Mo、C 元素分峰图 [29] 。 Figure 2 (a) The migration path of Na between and on the surface of MoS2 [26] ; (b) BET of DR-MoSe2 and DF-MoSe2 [27] ; (c) HRTEM image of MoSe2-MoO3/C [28] ; (d) Microscopic bonding of MoSe2@rGO, (e) XPS fitting curves of Mo and C elements [29] .…”
Section: 引言unclassified
“…Furthermore, the MoSe 2 -TiO 2−x -G nano heterostructures exhibit a remarkable capacity retention relative to current density, the specific capacity at 5 A g −1 still remains 85.7% of the initial one at 0.1 A g −1 , which outperforms those of many MoSe 2 based anode in previous literatures (Figure 3d), such as MoSe 2 /C, [18,35,36] MoSe 2 @CoSe/N-C, [20] CNT/MoSe 2 , [17] MoSe 2 /dual C, [37] MoSe 2 /N-C, [38] MoSe 2 /G, [19,39] MoSe 2 /SnO 2 , [40] MoSe 2 /3D-C, [41] TiO 2 @MoSe 2 P-C, [42] MoSe 2 . [43] Meanwhile, the MoSe 2 -TiO 2−x -G nano heterostructures exhibit a long term cycle stability in the DME electrolyte (Figure 3e), the specific capacity is still 407.1 mAh g −1 with the retention of 92.5% after 2000 cycles at 2 A g −1 (recorded after the rate measurement), which is much superior than most of the state-of-the-art MoSe 2 anode reported in literatures (Table S1, Supporting Information). As expected, the performance degradation in the EC/DEC electrolyte is severe.…”
Section: Sodium Ion Storage Performancementioning
confidence: 99%