We show that coherent flavor neutrino states are produced (and detected) due to the momentum-coordinate Heisenberg uncertainty relation. The Mandelstam-Tamm time-energy uncertainty relation requires non-stationary neutrino states for oscillations to happen and determines the time interval (propagation length) which is necessary for that. We compare different approaches to neutrino oscillations which are based on different physical assumptions but lead to the same expression for the neutrino transition probability in standard neutrino oscillation experiments. We show that a Mössbauer neutrino experiment could allow to distinguish different approaches and we present arguments in favor of the 163 Ho -163 Dy system for such an experiment.