We have investigated the lattice location of implanted transition metal (TM) 56 Mn, 59 Fe and 65 Ni ions in undoped single-crystalline cubic 3C-SiC by means of the emission channeling technique using radioactive isotopes produced at the CERN-ISOLDE facility. We find that in the room temperature as-implanted state, most Mn, Fe and Ni atoms occupy carbon-coordinated tetrahedral interstitial sites (T C). Smaller TM fractions were also found on Si substitutional (S Si) sites. The TM atoms partially disappear from ideal-T C positions during annealing at temperatures between 500 °C and 700 °C, which is accompanied by an increase in the TM fraction occupying both S Si sites and random sites. An explanation is given according to what is known about the annealing mechanisms of silicon vacancies in silicon carbide. The origin of the observed lattice sites and their changes with thermal annealing are discussed and compared to the case of Si, highlighting the feature that the interstitial migration of TMs in SiC is much slower than in Si.