We present a new technique for demonstrating the reachability of states in deterministic finite automata representing the concatenation of two languages. Such demonstrations are a necessary step in establishing the state complexity of the concatenation of two languages, and thus in establishing the state complexity of concatenation as an operation. Typically, ad-hoc induction arguments are used to show particular states are reachable in concatenation automata. We prove some results that seem to capture the essence of many of these induction arguments. Using these results, reachability proofs in concatenation automata can often be done more simply and without using induction directly.