Abstract:We derive a continuum mean-curvature flow as a certain hydrodynamic scaling limit of Glauber-Kawasaki dynamics with speed change. The Kawasaki part describes the movement of particles through particle interactions. It is speeded up in a diffusive space-time scaling. The Glauber part governs the creation and annihilation of particles. The Glauber part is set to favor two levels of particle density. It is also speeded up in time, but at a lesser rate than the Kawasaki part. Under this scaling, a mean-curvature i… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.