The use of virtual-reality technology in the areas of rehabilitation and therapy continues to grow, with encouraging results being reported for applications that address human physical, cognitive, and psychological functioning. This article presents a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis for the field of VR rehabilitation and therapy. The SWOT analysis is a commonly employed framework in the business world for analyzing the factors that influence a company's competitive position in the marketplace with an eye to the future. However, the SWOT framework can also be usefully applied outside of the pure business domain. A quick check on the Internet will turn up SWOT analyses for urban-renewal projects, career planning, website design, youth sports programs, and evaluation of academic research centers, and it becomes obvious that it can be usefully applied to assess and guide any organized human endeavor designed to accomplish a mission. It is hoped that this structured examination of the factors relevant to the current and future status of VR rehabilitation will provide a good overview of the key issues and concerns that are relevant for understanding and advancing this vital application area.
IntroductionVirtual reality (VR) has now emerged as a promising tool in many domains of therapy and rehabilitation (Weiss & Jessel, 1998;Glantz, Rizzo, & Graap, 2003;Zimand et al. 2003;Rizzo, Schultheis, Kerns, & Mateer, 2004). Continuing advances in VR technology, along with concomitant system-cost reductions, have supported the development of more usable, useful, and accessible VR systems that can uniquely target a wide range of physical, psychological, and cognitive rehabilitation concerns and research questions. What makes VR application development in the therapy and rehabilitation sciences so distinctively important is that it represents more than a simple linear extension of existing computer technology for human use. VR offers the potential to create systematic human testing, training, and treatment environments that allow for the precise control of complex, immersive, dynamic 3D stimulus presentations, within which sophisticated interaction, behavioral tracking, and performance recording is possible. Much like an aircraft simulator serves to test and train piloting ability, virtual environments (VEs) can be developed to present simulations that assess and rehabilitate human functional performance under a range of stimulus conditions that are not easily deliverable and controllable in the real world. When combining these assets within the context of functionally Rizzo and Kim 119