To investigate whether dynamic functional connectivity (DFC) metrics can better identify minimal hepatic encephalopathy (MHE) patients from cirrhotic patients without any hepatic encephalopathy (noHE) and healthy controls (HCs). Resting-state functional MRI data were acquired from 62 patients with cirrhosis (MHE, n=30; noHE, n=32) and 41 HCs. We used the sliding time window approach and functional connectivity analysis to extract the time-varying properties of brain connectivity. Three DFC characteristics (i.e., strength, stability, and variability) were calculated. For comparison, we also calculated the static functional connectivity (SFC). A linear support vector machine was used to differentiate MHE patients from noHE and HCs using DFC and SFC metrics as classi cation features. The leave-one-out cross-validation method was used to estimate the classi cation performance. The strength of DFC (DFC-Dstrength) achieved the best accuracy (MHE vs. noHE, 72.5%; MHE vs. HCs, 84%; and noHE vs. HCs, 88%) compared to the other dynamic features. Compared to static features, the classi cation accuracies of the DFC-Dstrength feature were improved by 10.5%, 8%, and 14% for MHE vs. noHE, MHE vs. HC, and noHE vs. HCs, respectively. Based on the DFC-Dstrength, seven nodes were identi ed as the most discriminant features to classify MHE from noHE, including left inferior parietal lobule, left supramarginal gyrus, left calcarine, left superior frontal gyrus, left cerebellum, right postcentral gyrus, and right insula. In summary , DFC characteristics have a higher classi cation accuracy in identifying MHE from cirrhosis patients. Our ndings suggest the usefulness of DFC in capturing neural processes and identifying disease-related biomarkers important for MHE identi cation.