Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems
Hojong Choi,
Junghun Park,
Yeon-Mo Yang
Abstract:This study is intended to improve the motor imagery classification performance of two-class data points using newly developed covariance decentering eigenface analysis (CDC-EFA). When extracting the classification for the given data points, it is necessary to precisely distinguish the classes because the left and right features are difficult to differentiate. However, when centering is performed, the unique average data of each feature are lost, making them difficult to distinguish. CDC-EFA reverses the center… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.