Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Brain–computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation. A lightweight feature extraction module is designed to extract key features from both the source and target domains, effectively reducing the model’s parameters and improving the real-time performance and computational efficiency. To address differences in sample distributions, a domain adaptation strategy is introduced to optimize the feature alignment. Furthermore, domain adversarial training is employed to promote the learning of domain-invariant features, significantly enhancing the model’s cross-subject generalization ability. The proposed method was evaluated on an fNIRS motor imagery dataset, achieving an average accuracy of 87.76% in a three-class classification task. Additionally, lightweight experiments were conducted from two perspectives: model structure optimization and data feature selection. The results demonstrated the potential advantages of this method for practical applications in motor imagery recognition systems.
Brain–computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation. A lightweight feature extraction module is designed to extract key features from both the source and target domains, effectively reducing the model’s parameters and improving the real-time performance and computational efficiency. To address differences in sample distributions, a domain adaptation strategy is introduced to optimize the feature alignment. Furthermore, domain adversarial training is employed to promote the learning of domain-invariant features, significantly enhancing the model’s cross-subject generalization ability. The proposed method was evaluated on an fNIRS motor imagery dataset, achieving an average accuracy of 87.76% in a three-class classification task. Additionally, lightweight experiments were conducted from two perspectives: model structure optimization and data feature selection. The results demonstrated the potential advantages of this method for practical applications in motor imagery recognition systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.