Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers to discharge near-simultaneously. It has been theorized as a control mechanism for force generation by common excitatory inputs to these motor neurons. Magnitude of synchronization is calculated from peaks in cross-correlation histograms between motor unit discharge trains. However, there are many different methods for detecting these peaks and even more indices for calculating synchronization from them. Methodology is diverse, typically laboratory-specific and requires expensive software, like Matlab or LabView. This lack of standardization makes it difficult to draw definitive conclusions about motor unit synchronization. A free, open-source toolbox, “motoRneuron”, for the R programming language, has been developed which contains functions for calculating time domain synchronization using different methods found in the literature. The objective of this paper is to detail the toolbox’s functionality and present a case study showing how the same synchronization index can differ when different methods are used to compute it. A pair of motor unit action potential trains were collected from the forearm during a isometric finger flexion task using fine wire electromyography. The motoRneuron package was used to analyze the discharge time of the motor units for time-domain synchronization. The primary function “mu_synch” automatically performed the cross-correlation analysis using three different peak detection methods, the cumulative sum method, the z-score method, and a subjective visual method. As function parameters defined by the user, only first order recurrence intervals were calculated and a 1 ms bin width was used to create the cross correlation histogram. Output from the function were six common synchronization indices, the common input strength (CIS), k′, k′ − 1, E, S, and Synch Index. In general, there was a high degree of synchronization between the two motor units. However, there was a varying degree of synchronization between methods. For example, the widely used CIS index, which represents a rate of synchronized discharges, shows a 45% difference between the visual and z-score methods. This singular example demonstrates how a lack of consensus in motor unit synchronization methodologies may lead to substantially differing results between studies. The motoRneuron toolbox provides researchers with a standard interface and software to examine time-domain motor unit synchronization.