Differential Drive Wheeled Mobile Robot (DDWMR) is a nonholonomic robot with constrained movement. Such constraint makes robot position control more difficult. A closed-loop control system such as PID can control robot position. However, DDWMR is a Multiple-Input-Multiple-Output system. There will be many feedback gains to be tuned, and the wrong value will make the system unstable. Therefore this research proposes an offline autotune method to choose optimal feedback gain that minimizes a fitness function. The fitness function uses Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE). These works propose to autotune feedback gain for DDWMR Jetbot, which implements a PI control system with six feedback gains. The methods used to tune the feedback gain are Particle Swarm Optimization (PSO) and Bird Swarm Algorithm (BSA). There are four different scenarios to do the autotune. The autotune result performance shows that those two methods can find an optimal gain to make the robot follow four different continuous trajectories without much trajectory deformation. PSO and BSA can do an autotune PI gain with six variables to minimize the Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE)