Biological threats are becoming a serious security issue for many countries across the world. Effective biosurveillance systems can primarily support appropriate responses to biological threats and consequently save human lives. Nevertheless, biosurveillance systems are costly to implement and hard to operate. Furthermore, they rely on static infrastructures that might not cope with the evolving dynamics of the monitored environment. In this paper, we present a reorganizing biosurveillance framework for the detection and localization of biological threats with fog and mobile edge computing support. In the proposed framework, a hierarchy of fog nodes are responsible for aggregating monitoring data within their regions and detecting potential threats. Although fog nodes are deployed on a fixed base station infrastructure, the framework provides an innovative technique for reorganizing the monitored environment structure to adapt to the evolving environmental conditions and to overcome the limitations of the static base station infrastructure. Evaluation results illustrate the ability of the framework to localize biological threats and detect infected areas. Moreover, the results show the effectiveness of the reorganization mechanisms in adjusting the environment structure to cope with the highly dynamic environment.
KeywordsMobile edge computing • Fog computing • Biosurveillance systems • Edge cloud data management
IntroductionWith the emergence of the recent COVID-19 outbreak, several contact-tracing applications have been proposed to alert users if they have come in close contact with someone who