2024
DOI: 10.1109/taffc.2023.3334522
|View full text |Cite
|
Sign up to set email alerts
|

Movement Representation Learning for Pain Level Classification

Temitayo Olugbade,
Amanda C de C Williams,
Nicolas Gold
et al.

Abstract: Self-supervised learning has shown value for uncovering informative movement features for human activity recognition. However, there has been minimal exploration of this approach for affect recognition where availability of large labelled datasets is particularly limited. In this paper, we propose a P-STEMR (Parallel Space-Time Encoding Movement Representation) architecture with the aim of addressing this gap and specifically leveraging the higher availability of human activity recognition datasets for pain-le… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?