An important technological operation in the care of forest crops is mechanized cutting of branches of unwanted vegetation. The working bodies used for cutting differ in design and energy costs for the cutting process. It is necessary to develop a methodology and conduct experimental studies of the process of cutting branches to select the working bodies to the greatest extent corresponding to the object of cutting. At present, systems based on strain gauges are widely used for the experimental study of machine parameters. However, along with them, digital interface is increasingly being introduced into measuring instruments such as oscilloscopes and multimeters. When studying the process of cutting branches with a rotor driven by an electric motor, the cutting resistance forces will create a torque on the shaft, which will lead to a change in the consumed current. The change in current strength can be measured with a multimeter, which enables to set the power indicators of the cutting process for the investigated rotors. In the work, a 3D model of rotors with rigidly mounted and hinged blades was developed using reverse engineering with the help of Solidworks CAD. The main geometric and mass characteristics of the rotors have been determined. The principle of connecting the measuring equipment (UNI-T 61E multimeter and shunt 75SHIP1-5-0.5) for measuring the cutting power of branches has been developed. Experimental studies have been carried out and differences in the power indicators of cutting for two types of working bodies have been established