Recent predictive processing accounts of perception and action point towards a key challenge for the nervous system in dynamically optimizing the balance between incoming sensory information and existing expectations regarding the state of the environment. Here, we report differences in the influence of the preceding sensory context on motor function, varying with respect to both clinical and subclinical features of autism spectrum disorder (ASD). Reach-to-grasp movements were recorded subsequent to an inactive period in which illusory ownership of a prosthetic limb was induced. We analysed the sub-components of reach trajectories derived using a minimum-jerk fitting procedure. Non-clinical adults low in autistic features showed disrupted movement execution following the illusion compared to a control condition. By contrast, individuals higher in autistic features (both those with ASD and non-clinical individuals high in autistic traits) showed reduced sensitivity to the presence of the illusion in their reaching movements while still exhibiting the typical perceptual effects of the illusion. Clinical individuals were distinct from non-clinical individuals scoring high in autistic features, however, in the early stages of movement. These results suggest that the influence of high-level representations of the environment differs between individuals, contributing to clinical and subclinical differences in motor performance that manifest in a contextual manner. As high-level representations of context help to explain fluctuations in sensory input over relatively longer time scales, more circumscribed sensitivity to prior or contextual information in autistic sensory processing could contribute more generally to reduced social comprehension, sensory impairments and a stronger desire for predictability and routine.