As the aging population increases rapidly throughout the world, various approaches and studies are in progress to prevent age-related diseases. Among the diseases related to the elderly, dementia (in which cognitive function declines) is classified as a mental disorder. Since there is currently no therapeutic agent for dementia, early diagnosis and prophylactic approaches may be useful. In this study, a mobile-based augmented reality system for regular cognitive function training is proposed to minimize declines in cognitive function among the elderly. Using the characteristics of markerless augmented reality technology that can support physical activities, the foregoing system was developed in the form of a serious game based on an understanding of physical aging by the main users and inspired by existing psychological cognitive evaluation tools. The augmented reality system proposed in this study aims to induce the active participation of clients with goal setting and motivation using a gamified training system. In addition, it can ultimately be used as a self-assessment tool by recording an individual users’ performance ability. This proposed system must be used after receiving proper guidance from psychologists. The game protocol was designed together with experts in clinical psychology: therapists as well as neuropsychological assessors who were experienced in carrying out cognitive training sessions. The experts said that the system could help improve cognitive functions, such as working memory, attention concentration, and visual perception memory. However, this system has some limitations. This system was verified once with a small number of experts and could not be introduced to an actual elderly group to undergo verification of effectiveness. To compensate, we will conduct experiments to verify the effectiveness in order to avoid placebo effects. The effectiveness of program implementation will be verified by digitizing the correlations between the results of the neuropsychological assessment in the form of paper and pens and the results of signal data.